Let’s have fun with prime numbers, threads, thread pool, TPL and CUDA?

Let’s have fun with prime numbers? In this post, I would like to share some results I got from using multi-threading with .NET and CUDA to find prime numbers in a range.

My machine:

  • Intel Core i7-7700HQ CPU @ 2.80GHz
  • 32 GB RAM
  • Windows 10 Pro
  • NVIDIA GeForce GTX 1070

It is important to say that I am NOT using the best algorithms here. I know there are better approaches to find prime numbers. Also, I am pretty sure there are a lot of improvements that I could implement in my code. So, take it easy. Right?

The book Pro .NET performance inspired the code in this post.

The starting point

Let’s start with a straightforward sequential implementation.

static void Main()
{
    var sw = new Stopwatch();
    sw.Start();
    var result = PrimesInRange(200, 800000);
    sw.Stop();
    Console.WriteLine($"{result} prime numbers found in {sw.ElapsedMilliseconds / 1000} seconds ({Environment.ProcessorCount} processors).");
}

public static long PrimesInRange(long start, long end)
{
    long result = 0;
    for (var number = start; number < end; number++)
    {
        if (IsPrime(number))
        {
            result++;
        }
    }
    return result;
}

static bool IsPrime(long number)
{
    if (number == 2) return true;
    if (number % 2 == 0) return false;
    for (long divisor = 3; divisor < (number / 2); divisor += 2)
    {
        if (number % divisor == 0)
        {
            return false;
        }
    }
    return true;
}

Time to run: ~76 seconds!

Using Threads

public static long PrimesInRange(long start, long end)
{
    long result = 0;
    var lockObject = new object();

    var range = end - start;
    var numberOfThreads = (long) Environment.ProcessorCount;

    var threads = new Thread[numberOfThreads];
    var chunkSize = range / numberOfThreads;

    for (long i = 0; i < numberOfThreads; i++) 
    { 
        var chunkStart = start + i * chunkSize; 
        var chunkEnd = (i == (numberOfThreads - 1)) ? end : chunkStart + chunkSize; 
        threads[i] = new Thread(() =>
        {
            for (var number = chunkStart; number < chunkEnd; ++number)
            {
                if (IsPrime(number))
                {
                    lock (lockObject)
                    {
                        result++;
                    }
                }
            }
        });

        threads[i].Start();
    }

    foreach (var thread in threads)
    {
        thread.Join();
    }

    return result;
}

This is a naïve implementation. Do you know why? Share your thoughts in the comments.

Time to run: ~23 seconds.

Using Threads (no locks)

public static long PrimesInRange2_1(long start, long end)
{
    //var result = new List();
    var range = end - start;
    var numberOfThreads = (long)Environment.ProcessorCount;

    var threads = new Thread[numberOfThreads];
    var results = new long[numberOfThreads];

    var chunkSize = range / numberOfThreads;

    for (long i = 0; i < numberOfThreads; i++) 
    { 
        var chunkStart = start + i * chunkSize; 
        var chunkEnd = i == (numberOfThreads - 1) ? end : chunkStart + chunkSize; 
        var current = i; 
        
        threads[i] = new Thread(() =>
        {
            results[current] = 0;
            for (var number = chunkStart; number < chunkEnd; ++number)
            {
                if (IsPrime(number))
                {
                    results[current]++;
                }
            }
        });

        threads[i].Start();
    }

    foreach (var thread in threads)
    {
        thread.Join();
    }

    return results.Sum();
}

Time to run: ~23 seconds.

Using Threads (Interlocked)

public static long PrimesInRange(long start, long end)
{
    long result = 0;
    var range = end - start;
    var numberOfThreads = (long)Environment.ProcessorCount;

    var threads = new Thread[numberOfThreads];

    var chunkSize = range / numberOfThreads;

    for (long i = 0; i < numberOfThreads; i++) 
    { 
        var chunkStart = start + i * chunkSize; 
        var chunkEnd = i == (numberOfThreads - 1) ? end : chunkStart + chunkSize; 
        threads[i] = new Thread(() =>
        {
            for (var number = chunkStart; number < chunkEnd; ++number)
            {
                if (IsPrime(number))
                {
                    Interlocked.Increment(ref result);
                }
            }
        });

        threads[i].Start();
    }

    foreach (var thread in threads)
    {
        thread.Join();
    }

    return result;
}

Time to Run: ~23 seconds.

ThreadPool

public static long PrimesInRange(long start, long end)
{
    long result = 0;
    const long chunkSize = 100;
    var completed = 0;
    var allDone = new ManualResetEvent(initialState: false);

    var chunks = (end - start) / chunkSize;

    for (long i = 0; i < chunks; i++) 
    { 
        var chunkStart = (start) + i * chunkSize; 
        var chunkEnd = i == (chunks - 1) ? end : chunkStart + chunkSize; 
        ThreadPool.QueueUserWorkItem(_ =>
        {
            for (var number = chunkStart; number < chunkEnd; number++)
            {
                if (IsPrime(number))
                {
                    Interlocked.Increment(ref result);
                }
            }

            if (Interlocked.Increment(ref completed) == chunks)
            {
                allDone.Set();
            }
        });
                
    }
    allDone.WaitOne();
    return result;
}

Time to Run: ~16 seconds.

Parallel.For

public static long PrimesInRange4(long start, long end)
{
    long result = 0;
    Parallel.For(start, end, number =>
    {
        if (IsPrime(number))
        {
            Interlocked.Increment(ref result);
        }
    });
    return result;
}

Time to Run: ~16 seconds.

CUDA

#include "device_launch_parameters.h"
#include "cuda_runtime.h"

#include <ctime>
#include <cstdio>


__global__ void primes_in_range(int *result)
{
	const auto number = 200 + (blockIdx.x * blockDim.x) + threadIdx.x;
	if (number >= 800000)
	{
		return;
	}

	if (number % 2 == 0) return;
	for (long divisor = 3; divisor < (number / 2); divisor += 2)
	{
		if (number % divisor == 0)
		{
			return;
		}
	}

	atomicAdd(result, 1);
}

int main()
{
	auto begin = std::clock();

	int *result;
	cudaMallocManaged(&result, 4);
	*result = 0;

	primes_in_range<<<800, 1024>>>(result);
	cudaDeviceSynchronize();

	auto end = std::clock();
	auto duration = double(end - begin) / CLOCKS_PER_SEC * 1000;
	
	printf("%d prime numbers found in %d milliseconds", 
		*result, 
		static_cast<int>(duration)
	);
	
	getchar();
	return 0;
}

Time to Run: Less than 2 seconds.

Time to Action

I strongly recommend you to reproduce this tests on your machine. If you see something that I could do better, please, share your ideas.

I understand that performance is a feature. I will continue to blog about it. Subscribe the contact list, and I will send you an email every week with the new content.

Compartilhe este insight:

Elemar Júnior

Sou fundador e CEO da EximiaCo e atuo como tech trusted advisor ajudando diversas empresas a gerar mais resultados através da tecnologia.

Elemar Júnior

Sou fundador e CEO da EximiaCo e atuo como tech trusted advisor ajudando diversas empresas a gerar mais resultados através da tecnologia.

Mais insights para o seu negócio

Veja mais alguns estudos e reflexões que podem gerar alguns insights para o seu negócio:

Desenvolver software profissionalmente, em um ambiente onde a finalidade é lucro, implica em ampliar ganhos e/ou reduzir custos. O resultado...
As you probably noted, my old blog posts are gone! It’s sad, but I had to take this way. Main reasons:...
Na Guiando, a área de Implantação também está adotando Kanban (Não ficamos restritos ao desenvolvimento). Começando por lá, resolvemos adotar...
Há anos eu conheço e aceito a ideia de que devemos buscar melhoria contínua. Sei que é natural e aceitável...
Muitas vezes, em nossos sistemas, temos tarefas que demandam processamento de  longa duração ou possuem alta complexidade computacional. Na medida...
Compete ao arquiteto corporativo a responsabilidade de descrever, analisar e comunicar os diversos aspectos da arquitetura corporativa, bem como registrar...
Masterclass

O Poder do Metamodelo para Profissionais Técnicos Avançarem

Nesta masterclass aberta ao público, vamos explorar como o Metamodelo para a Criação, desenvolvido por Elemar Júnior, pode ser uma ferramenta poderosa para alavancar sua carreira técnica em TI.

Crie sua conta

Preencha os dados para iniciar o seu cadastro no plano anual do Clube de Estudos:

Crie sua conta

Preencha os dados para iniciar o seu cadastro no plano mensal do Clube de Estudos:

× Precisa de ajuda?